Vulture/VApp/node_modules/@videojs/vhs-utils/test/byte-helpers.test.js

322 lines
14 KiB
JavaScript

import QUnit from 'qunit';
import {
bytesToString,
stringToBytes,
toUint8,
concatTypedArrays,
toHexString,
toBinaryString,
bytesToNumber,
numberToBytes,
bytesMatch
} from '../src/byte-helpers.js';
import window from 'global/window';
const arrayNames = [];
const BigInt = window.BigInt;
[
'Array',
'Int8Array',
'Uint8Array',
'Uint8ClampedArray',
'Int16Array',
'Uint16Array',
'Int32Array',
'Uint32Array',
'Float32Array',
'Float64Array'
].forEach(function(name) {
if (window[name]) {
arrayNames.push(name);
}
});
QUnit.module('bytesToString');
const testString = 'hello竜';
const testBytes = toUint8([
// h
0x68,
// e
0x65,
// l
0x6c,
// l
0x6c,
// o
0x6f,
// 竜
0xe7, 0xab, 0x9c
]);
const rawBytes = toUint8([0x47, 0x40, 0x00, 0x10, 0x00, 0x00, 0xb0, 0x0d, 0x00, 0x01]);
QUnit.test('should function as expected', function(assert) {
arrayNames.forEach(function(name) {
const testObj = name === 'Array' ? testBytes : new window[name](testBytes);
assert.equal(bytesToString(testObj), testString, `testString work as a string arg with ${name}`);
assert.equal(bytesToString(new window[name]()), '', `empty ${name} returns empty string`);
});
assert.equal(bytesToString(), '', 'undefined returns empty string');
assert.equal(bytesToString(null), '', 'null returns empty string');
assert.equal(bytesToString(stringToBytes(testString)), testString, 'stringToBytes -> bytesToString works');
});
QUnit.module('stringToBytes');
QUnit.test('should function as expected', function(assert) {
assert.deepEqual(stringToBytes(testString), testBytes, 'returns an array of bytes');
assert.deepEqual(stringToBytes(), toUint8(), 'empty array for undefined');
assert.deepEqual(stringToBytes(null), toUint8(), 'empty array for null');
assert.deepEqual(stringToBytes(''), toUint8(), 'empty array for empty string');
assert.deepEqual(stringToBytes(10), toUint8([0x31, 0x30]), 'converts numbers to strings');
assert.deepEqual(stringToBytes(bytesToString(testBytes)), testBytes, 'bytesToString -> stringToBytes works');
assert.deepEqual(stringToBytes(bytesToString(rawBytes), true), rawBytes, 'equal to original with raw bytes mode');
assert.notDeepEqual(stringToBytes(bytesToString(rawBytes)), rawBytes, 'without raw byte mode works, not equal');
});
QUnit.module('toUint8');
QUnit.test('should function as expected', function(assert) {
const tests = {
undef: {
data: undefined,
expected: new Uint8Array()
},
null: {
data: null,
expected: new Uint8Array()
},
string: {
data: 'foo',
expected: new Uint8Array()
},
NaN: {
data: NaN,
expected: new Uint8Array()
},
object: {
data: {},
expected: new Uint8Array()
},
number: {
data: 0x11,
expected: new Uint8Array([0x11])
}
};
Object.keys(tests).forEach(function(name) {
const {data, expected} = tests[name];
const result = toUint8(data);
assert.ok(result instanceof Uint8Array, `obj is a Uint8Array for ${name}`);
assert.deepEqual(result, expected, `data is as expected for ${name}`);
});
arrayNames.forEach(function(name) {
const testObj = name === 'Array' ? testBytes : new window[name](testBytes);
const uint = toUint8(testObj);
assert.ok(uint instanceof Uint8Array && uint.length > 0, `converted ${name} to Uint8Array`);
});
});
QUnit.module('concatTypedArrays');
QUnit.test('should function as expected', function(assert) {
const tests = {
undef: {
data: concatTypedArrays(),
expected: toUint8([])
},
empty: {
data: concatTypedArrays(toUint8([])),
expected: toUint8([])
},
single: {
data: concatTypedArrays([0x01]),
expected: toUint8([0x01])
},
array: {
data: concatTypedArrays([0x01], [0x02]),
expected: toUint8([0x01, 0x02])
},
uint: {
data: concatTypedArrays(toUint8([0x01]), toUint8([0x02])),
expected: toUint8([0x01, 0x02])
},
buffer: {
data: concatTypedArrays(toUint8([0x01]).buffer, toUint8([0x02]).buffer),
expected: toUint8([0x01, 0x02])
},
manyarray: {
data: concatTypedArrays([0x01], [0x02], [0x03], [0x04]),
expected: toUint8([0x01, 0x02, 0x03, 0x04])
},
manyuint: {
data: concatTypedArrays(toUint8([0x01]), toUint8([0x02]), toUint8([0x03]), toUint8([0x04])),
expected: toUint8([0x01, 0x02, 0x03, 0x04])
}
};
Object.keys(tests).forEach(function(name) {
const {data, expected} = tests[name];
assert.ok(data instanceof Uint8Array, `obj is a Uint8Array for ${name}`);
assert.deepEqual(data, expected, `data is as expected for ${name}`);
});
});
QUnit.module('toHexString');
QUnit.test('should function as expected', function(assert) {
assert.equal(toHexString(0xFF), 'ff', 'works with single value');
assert.equal(toHexString([0xFF, 0xaa]), 'ffaa', 'works with array');
assert.equal(toHexString(toUint8([0xFF, 0xaa])), 'ffaa', 'works with uint8');
assert.equal(toHexString(toUint8([0xFF, 0xaa]).buffer), 'ffaa', 'works with buffer');
assert.equal(toHexString(toUint8([0xFF, 0xaa, 0xbb]).subarray(1, 3)), 'aabb', 'works with subarray');
assert.equal(toHexString([0x01, 0x02, 0x03]), '010203', 'works with single digits');
});
QUnit.module('toBinaryString');
QUnit.test('should function as expected', function(assert) {
const ff = '11111111';
const aa = '10101010';
const bb = '10111011';
const zerof = '00001111';
const one = '00000001';
const zero = '00000000';
const fzero = '11110000';
assert.equal(toBinaryString(0xFF), ff, 'works with single value');
assert.equal(toBinaryString([0xFF, 0xaa]), ff + aa, 'works with array');
assert.equal(toBinaryString(toUint8([0xFF, 0xbb])), ff + bb, 'works with uint8');
assert.equal(toBinaryString(toUint8([0xFF, 0xaa]).buffer), ff + aa, 'works with buffer');
assert.equal(toBinaryString(toUint8([0xFF, 0xaa, 0xbb]).subarray(1, 3)), aa + bb, 'works with subarray');
assert.equal(toBinaryString([0x0F, 0x01, 0xF0, 0x00]), zerof + one + fzero + zero, 'works with varying digits digits');
});
QUnit.module('bytesToNumber');
QUnit.test('sanity', function(assert) {
assert.equal(bytesToNumber(0xFF), 0xFF, 'single value');
assert.equal(bytesToNumber([0xFF, 0x01]), 0xFF01, 'works with array');
assert.equal(bytesToNumber(toUint8([0xFF, 0xbb])), 0xFFBB, 'works with uint8');
assert.equal(bytesToNumber(toUint8([0xFF, 0xaa]).buffer), 0xFFAA, 'works with buffer');
assert.equal(bytesToNumber(toUint8([0xFF, 0xaa, 0xbb]).subarray(1, 3)), 0xAABB, 'works with subarray');
});
QUnit.test('unsigned and littleEndian work', function(assert) {
// works with any number of bits
assert.equal(bytesToNumber([0xFF]), 0xFF, 'u8');
assert.equal(bytesToNumber([0xFF, 0xAA]), 0xFFAA, 'u16');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB]), 0xFFAABB, 'u24');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC]), 0xFFAABBCC, 'u32');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD]), 0xFFAABBCCDD, 'u40');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE]), 0xFFAABBCCDDEE, 'u48');
assert.equal(bytesToNumber([0xFF], {le: true}), 0xFF, 'u8 le');
assert.equal(bytesToNumber([0xFF, 0xAA], {le: true}), 0xAAFF, 'u16 le');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB], {le: true}), 0xBBAAFF, 'u24 le');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC], {le: true}), 0xCCBBAAFF, 'u32 le');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD], {le: true}), 0xDDCCBBAAFF, 'u40 le');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE], {le: true}), 0xEEDDCCBBAAFF, 'u48 le');
if (BigInt) {
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0x99]), 0xFFAABBCCDDEE99, 'u56');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0x99, 0x88]), 0xFFAABBCCDDEE9988, 'u64');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0x99], {le: true}), 0x99EEDDCCBBAAFF, 'u56 le');
assert.equal(bytesToNumber([0xFF, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0x99, 0x88], {le: true}), 0x8899EEDDCCBBAAFF, 'u64 le');
}
});
QUnit.test('signed and littleEndian work', function(assert) {
assert.equal(bytesToNumber([0xF0], {signed: true}), -16, 'i8');
assert.equal(bytesToNumber([0x80, 0x70], {signed: true}), -32656, 'i16');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f], {signed: true}), -8359777, 'i24');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f, 0xFF], {signed: true}), -2140102657, 'i32');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f, 0xFF, 0x10], {signed: true}), -547866280176, 'i40');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f, 0xFF, 0x10, 0x89], {signed: true}), -140253767724919, 'i48');
assert.equal(bytesToNumber([0xF0], {signed: true, le: true}), -16, 'i8 le');
assert.equal(bytesToNumber([0x80, 0x70], {signed: true, le: true}), 0x7080, 'i16 le');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f], {signed: true, le: true}), -6328192, 'i24 le');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f, 0xFF], {signed: true, le: true}), -6328192, 'i32 le');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f, 0xFF, 0x10], {signed: true, le: true}), 73008115840, 'i40 le');
assert.equal(bytesToNumber([0x80, 0x70, 0x9f, 0xFF, 0x10, 0x89], {signed: true, le: true}), -130768875589504, 'i48 le');
if (BigInt) {
assert.equal(bytesToNumber([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF], {signed: true}), -1, 'i56');
assert.equal(bytesToNumber([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF], {signed: true}), -1, 'i64');
assert.equal(bytesToNumber([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF], {signed: true, le: true}), -1, 'i56 le');
assert.equal(bytesToNumber([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF], {signed: true, le: true}), -1, 'i64 le');
}
});
QUnit.module('numberToBytes');
QUnit.test('unsigned negative and positive', function(assert) {
assert.deepEqual(numberToBytes(), toUint8([0x00]), 'no bytes');
assert.deepEqual(numberToBytes(0xFF), toUint8([0xFF]), 'u8');
assert.deepEqual(numberToBytes(0xFFaa), toUint8([0xFF, 0xaa]), 'u16');
assert.deepEqual(numberToBytes(0xFFaabb), toUint8([0xFF, 0xaa, 0xbb]), 'u24');
assert.deepEqual(numberToBytes(0xFFaabbcc), toUint8([0xFF, 0xaa, 0xbb, 0xcc]), 'u32');
assert.deepEqual(numberToBytes(0xFFaabbccdd), toUint8([0xFF, 0xaa, 0xbb, 0xcc, 0xdd]), 'u40');
assert.deepEqual(numberToBytes(0xFFaabbccddee), toUint8([0xFF, 0xaa, 0xbb, 0xcc, 0xdd, 0xee]), 'u48');
assert.deepEqual(numberToBytes(-16), toUint8([0xF0]), 'negative to u8');
assert.deepEqual(numberToBytes(-32640), toUint8([0x80, 0x80]), 'negative to u16');
assert.deepEqual(numberToBytes(-3264062), toUint8([0xce, 0x31, 0xc2]), 'negative to u24');
assert.deepEqual(numberToBytes(-2139062144), toUint8([0x80, 0x80, 0x80, 0x80]), 'negative to u32');
assert.deepEqual(numberToBytes(-3139062144), toUint8([0xff, 0x44, 0xe5, 0xb6, 0x80]), 'negative u40');
assert.deepEqual(numberToBytes(-3139062144444), toUint8([0xfd, 0x25, 0x21, 0x50, 0xe2, 0x44]), 'negative u48');
if (BigInt) {
assert.deepEqual(numberToBytes(BigInt('0xFFaabbccddee99')), toUint8([0xFF, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0x99]), 'u56');
assert.deepEqual(numberToBytes(BigInt('0xFFaabbccddee9988')), toUint8([0xFF, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0x99, 0x88]), 'u64');
assert.deepEqual(numberToBytes(BigInt('-31390621444448812')), toUint8([0x90, 0x7a, 0x65, 0x67, 0x86, 0x5d, 0xd4]), 'negative to u56');
assert.deepEqual(numberToBytes(BigInt('-9187201950435737472')), toUint8([0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80]), 'u64');
}
});
QUnit.test('unsigned littleEndian negative and positive', function(assert) {
assert.deepEqual(numberToBytes(0xFF, {le: true}), toUint8([0xFF]), 'u8');
assert.deepEqual(numberToBytes(0xFFaa, {le: true}), toUint8([0xaa, 0xFF]), 'u16');
assert.deepEqual(numberToBytes(0xFFaabb, {le: true}), toUint8([0xbb, 0xaa, 0xFF]), 'u24');
assert.deepEqual(numberToBytes(0xFFaabbcc, {le: true}), toUint8([0xcc, 0xbb, 0xaa, 0xff]), 'u32');
assert.deepEqual(numberToBytes(0xFFaabbccdd, {le: true}), toUint8([0xdd, 0xcc, 0xbb, 0xaa, 0xff]), 'u40');
assert.deepEqual(numberToBytes(0xFFaabbccddee, {le: true}), toUint8([0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0xff]), 'u48');
assert.deepEqual(numberToBytes(-16, {le: true}), toUint8([0xF0]), 'negative to u8');
assert.deepEqual(numberToBytes(-32640, {le: true}), toUint8([0x80, 0x80]), 'negative to u16');
assert.deepEqual(numberToBytes(-3264062, {le: true}), toUint8([0xc2, 0x31, 0xce]), 'negative to u24');
assert.deepEqual(numberToBytes(-2139062144, {le: true}), toUint8([0x80, 0x80, 0x80, 0x80]), 'negative to u32');
assert.deepEqual(numberToBytes(-3139062144, {le: true}), toUint8([0x80, 0xb6, 0xe5, 0x44, 0xff]), 'negative u40');
assert.deepEqual(numberToBytes(-3139062144444, {le: true}), toUint8([0x44, 0xe2, 0x50, 0x21, 0x25, 0xfd]), 'negative u48');
if (BigInt) {
assert.deepEqual(numberToBytes(BigInt('0xFFaabbccddee99'), {le: true}), toUint8([0x99, 0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0xff]), 'u56');
assert.deepEqual(numberToBytes(BigInt('0xFFaabbccddee9988'), {le: true}), toUint8([0x88, 0x99, 0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0xff]), 'u64');
assert.deepEqual(numberToBytes(BigInt('-31390621444448812'), {le: true}), toUint8([0xd4, 0x5d, 0x86, 0x67, 0x65, 0x7a, 0x90]), 'negative to u56');
assert.deepEqual(numberToBytes(BigInt('-9187201950435737472'), {le: true}), toUint8([0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80]), 'u64');
}
});
QUnit.module('bytesMatch');
QUnit.test('should function as expected', function(assert) {
assert.equal(bytesMatch(), false, 'no a or b bytes, false');
assert.equal(bytesMatch(null, []), false, 'no a bytes, false');
assert.equal(bytesMatch([]), false, 'no b bytes, false');
assert.equal(bytesMatch([0x00], [0x00, 0x02]), false, 'not enough bytes');
assert.equal(bytesMatch([0x00], [0x00], {offset: 1}), false, 'not due to offset');
assert.equal(bytesMatch([0xbb, 0xaa], [0xaa]), false, 'bytes do not match');
assert.equal(bytesMatch([0xaa], [0xaa], {mask: [0x10]}), false, 'bytes do not match due to mask');
assert.equal(bytesMatch([0xaa], [0xaa]), true, 'bytes match');
assert.equal(bytesMatch([0xbb, 0xaa], [0xbb]), true, 'bytes match more a');
assert.equal(bytesMatch([0xbb, 0xaa], [0xaa], {offset: 1}), true, 'bytes match with offset');
assert.equal(bytesMatch([0xaa], [0x20], {mask: [0x20]}), true, 'bytes match with mask');
assert.equal(bytesMatch([0xbb, 0xaa], [0x20], {mask: [0x20], offset: 1}), true, 'bytes match with mask and offset');
assert.equal(bytesMatch([0xbb, 0xaa, 0xaa], [0x20, 0x20], {mask: [0x20, 0x20], offset: 1}), true, 'bytes match with many masks and offset');
});